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3.8 Equations, Equalities and the Laws of
Nature

We have seen that in the set of rational numbers all the basic arithmetic
operations: addition, subtraction, multiplication and division (except for
division by zero), are always feasible. The good properties of these operations
give us the freedom and simplicity in calculation that we did not have either
in the set of natural numbers nor in the set of integers. Now we will use
these advantages in solving equations.

Example 3.8.1. After a hard business day, pirate Giorgio decided to relax
a bit. He took several gold coins and parked his boat in front of the Double
Luck casino. The admission cost five gold coins, but in the casino he was
lucky and doubled the number of gold coins that he had on him. He paid five
gold coins for parking, and left on his boat for another casino Free Admis-
sion, where he again doubled his amount of gold coins. However, after he
had left and paid six gold coins for parking, he had no coins left, and he won-
dered why he had not one gold coin in his pocket when he had been winning
constantly. How many coins did the pirate Giorgio take when he set out to
have fun?

Solution. Let us call the required number of unknown gold coins x. In
order to determine how much x is, we have to make use of the information
mentioned. After paying the admission to the first casino, Giorgio had x -5
gold coins. Since in the games of chance he doubled this number, he left
the casino with (x — 5) -2 gold coins. However, he had to pay 5 gold coins for
the parking, so he entered the second casino (where the admission was free)
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with (x —5)-2 -5 gold coins. He had luck there as well, and so he left with
double the number of gold coins, which means [(x —5) -2 —5]-2 gold coins.
After paying 6 gold coins for the parking, he had nothing left. Thus,

[(x-5)-2-5]-2-6=0

This is the required information about the unknown number x.

Equation with One Unknown

This type of information about an unknown number, a condition in the
form of equality, is called an equation (with one unknown).

The solution of the equation is any number which fulfils this con-
dition.

To solve an equation means to find all its solutions.

We will deal in more detail with equations and their application in solving
actual problems (like the one with the pirate) in Circle 2. For the moment,
we will consider the equation as information about an unknown number x,
on the basis of which we will try to discover it. However, unlike in the detec-
tive novels by Agatha Christie, we will not need any inspired reasoning by
detective Hercule Poirot, but rather simple calculation. The aim is, namely,
to obtain from the initial information [(x —5)-2—-5]-2 -6 = 0 the information
in the form

x = something known

This will be realised by a number of simple inferences. Every such inference
consists of a simple step — we will add or subtract the same number both
from the left and the right side of equation, or we will multiply or divide
them by the same non-zero number. Every such step is possible because
these operations are feasible in the set of rational numbers. Every one is
correct since, by applying the same operation equally on the left and right
sides, we will again obtain equal left and right sides. For instance, we can
add to the left and right side of the initial equation the number 100. Briefly,
we say that we added 100 to the equation and we write down:

[(x—5)-2-5]-2-6=0 |+100

When we add 100 both to the left and the right side, we get
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[(x-5)-2-5]-2-6+100=0+100
After simplifying both sides, the equation is
[(x—-5)-2-5]-2+94 =100

Since the step is correct, we have again obtained a true item of information
about x. However, the problem is that it is no better than the initial in-
formation. The number x is no more known now than before. However, if
instead of 100 we add 6 to the equation, we will get better information about
the number x, because with this action we will cancel the subtraction of the
number 6 on the left side of the equation:

[(x-5)-2-5]-2-6=0 |+6
[(x-5)-2-5]-2-6+6=0+6
[(x-5)-2-5]-2=6

Now we are closer to the number x. Its discovery may be compared to a
rabbit in the forest caught in a trap that you want to save by opening the
trap. You disassemble the trap from the outside.

We have already cancelled the subtraction of the number 6 by adding the
number 6 to the equation. Now we need to cancel the multiplication by the
number 2. We will do this by dividing the equation by the number 2:
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[(x—5)-2-5]-2=6 |[:2
[(x-5)-2-5]-2:2=6:2
(x—5)-2-5=3

The strategy for discovering the number x is clear. Although we can per-
form arbitrary operations with the equation, we will perform the one that
will cancel the last operation done with number x. And this is its inverse
operation. Thus we will now cancel the subtraction of number 5 by adding
the number 5, and so on:

(x—-5)-2-5=3 |+5
(x—5)-2-5+5=3+5
(x—5)-2=8 |:2
x—5=4 |+5
x=9

The number x has been discovered! Thus, pirate Giorgio had 9 gold coins in
his pocket. Although in every casino he doubled the number of gold coins, he
had to pay too much for admissions and parking. Oh my dear Giorgio, there
is always a bigger fish. O

We could eliminate all operations precisely owing to the fact that in the set
of rational numbers, for every basic arithmetic operation there is its inverse
operation, except for multiplication by zero. Not being able to divide by zero
is not a restriction in solving equations, since such a situation is very rare
(we will deal with this in Circle 2). True, we can multiply by zero, but this
is completely non-informative. Indeed, if we multiplied the initial equation
(or any other) by zero, since multiplication by zero yields zero, we would get
0 = 0. Therefore, we would not find out anything new, and particularly not
about the sought unknown. Simply, by multiplying the equation by zero, we
would destroy the information.
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Bearing in mind the previous example, let us analyse the process of solv-
ing an equation. The permitted steps in solving are:

* Any description on any side can be replaced by a different description
of the same number. For instance, the description x + 1+ 2x —3 can be
replaced by the description 3x — 2.

e With both sides we can do the same, because if we perform the same
operation f to both sides of the equality L = D, we will obtain equality
again: f(L) = f(D). For instance, if 2x—3 = x + 1, if we subtract on both
sides x, we will get the equality 2x -3 -x=x+1—x.

These rules are correct and simple, although there are some details that we
will leave for Circle 2. For the moment, these details will not be significant
to us since the only operations that we will do will be addition and subtrac-
tion, as well as multiplication and division by a non-zero number. Since
we are working in the set of rational numbers, these operations are always
feasible. Since every operation has its inverse operation, whenever - by ap-
plying one of these operations to one equation - we get another equation,
by inverse operation from the second equation we obtain the first one once
again. This establishes one significant connection between these equations:
equations are equivalent, that is to say they have the same solutions. Gen-
erally, for two conditions we say that they are equivalent when the same
objects satisfy them. Thus, solving of the equation is reduced to repeated
transformations according to the mentioned rules into equivalent equations,
until the final equation is obtained whose solution we can “see”. In the previ-
ous example such a final equation was the equation x =9. The only number
that satisfies this equation is 9. Since the equation x = 9 is equivalent to
the initial equation from the example, [(x —5)-2—-5]-2 -6 = 0, the number
9 is at the same time the only solution of the initial equation. Naturally, in
transforming the equations we use the permitted steps with a certain strat-
egy, in order to obtain a simple equation by which we see the solution. The
basic principle that we use is the principle of inverse operation: when
we want to cancel the last operation on one side of the equation, we apply the
inverse operation on the equation.
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Procedure (Restricted) for Solving Equations

Our aim is to get an equation which is equivalent to the initial equa-
tion and which gives us a solution. We try to get it by progressively
applying the following steps to the initial equation:

* Any description on either side can be replaced by a different de-
scription of the same number.

* We may add to or subtract from both the left and the right side of
the equation the same number. We may also multiply or divide
them with the same non-zero number.

One of the basic strategies of the procedure is the principle of inverse
operation: in order to eliminate the last operation performed on one
side of the equation, we apply both to the left and the right side of the
equation its inverse operation.

Example 3.8.2. Pirate Giorgio, angry at being robbed so dishonourably
(without a fight), decided to raid the Double Luck casino. In the dead of
night he managed to get to the cash register and to break the code (by
smashing the cash register with an axe several times). With a full bag of
gold coins he started towards the exit, but he bumped into the cashier. The
cashier requested two thirds of the treasure to keep quiet. Giorgio gave him
two thirds of the treasure and 4 gold coins extra as a tip (a bad habit he
acquired by hanging out with waiters). At the very exit of the casino he
bumped into the security guard and to prevent him from betraying him, he
gave the guard half of the rest of the loot and 2 more gold coins. Just as he
was about to board his ship, he bumped into the local gendarme and had to
give him three fourths of the rest of the treasure (something like a theft tax)
and 8 gold coins more as a tip. When he arrived home, he was disappointed
to find that he only had one gold coin left. How many stolen gold coins was
Giorgio sorry about?

2 1
Solution. Having given 3 of the robbed treasure x to the cashier, he had —

of the treasure left, and this amount was also reduced by the 4 gold coin tip.

Thus, he had gx —4 gold coins left. In the same way we can determine that

1(1
after the encounter with the security guard he had 2 (gx — 4) —2 gold coins,

1[1/(1
and after meeting the gendarme 1l3 (gx - 4) - 2] — 8. Since only one gold
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coin remained, the required equation for x is:

1[1(1
—{—(—x—g-z -8=1
4]2\3

This equation will be solved in the manner already described:

1 H_x—4)—z] _8=1]+8

1[1
—[—(—x—4)—Zl:9L4
41213
1(1
—(—x—4)—2:36|+2
213
1(1
—(—x—4):38y2
213

1
—x—4=76|+4
3

1
—x=801-3
3

x =240
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If the unknown in the equation can be found in several places, we will keep
simplifying the left and the right side of the equation and move the members
from one side to the other in order to have the unknown only in one place.
The following examples show a typical procedure of solving such equations.

Example 3.8.3. Let us solve:

1. 3-(2x-3)=4(x-1)—-[1-2(x-1)]
9 1+2(4—x)_2—x_6—2x 5

+
2 3 4 2

Solution.

1. First, we will simplify each side:

3—-2x-3)=4x-1)—-[1-2(x-1)]
3—2x+3=4x-4—-[1-2x+2]
6-2x=4x—-4-1+2x-2
6-2x=6x—-7 |—-6x—6

Parts with the unknown are moved to one side and the rest to the
other:

—2x—6x=-7—-6
—8x=-13 |:(-8)

By dividing by —8 we will bring x into the clear:

2. We get rid of the denominator by multiplying the equation by the least
common multiple of all the denominators:

1+24-x) 2-x B 6-2x 5

2 3 2 g I'12
g Mg Mg 2

6-(1+2(4-x)—-4-2-x)=3-(6-2x)+5-6
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We simplify both sides:

6-(1+8—-2x)—8+4x=18-6x+30
6+48—-12x—-8+4x=18-6x+30
—-8x+46=48-6x |+6x—46

We transfer the parts:

—8x+6x=48—-46
-2x=2 |:(-2)

x=-1

The obtained solution can be always checked by substituting it in the
equation. By including x = —1 into the equation we get

2 3 4 2

1+2(4—(—1))_2—(—1) B 6—2-(—1)+5

The calculation yields 2= g We have obtained a true statement.

Thus, the number —1 satisfies the condition and it really is the solution
of the equation. By verifying the obtained solution we can discover the
error in solving the equation. There are also other reasons that require
verification from time to time, but we will talk about it later, when we
study equations in more detail in Circle 2. O

In the software SageMath we have the command solve for solving equa-
tions. The command solve has two inputs — we have to specify which equa-
tion we want to solve and according to which variable. In this way, we can
solve the last equation from the previous example:

solve ((1+2%(4-x))/2-(2-x)/3==(6-2%x) /4+5/2,%)
# The sign for equality in an equation is written as ==!

We will get

[x == -1]
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Example 3.8.4. Since he was left without any cash, pirate Giorgio remem-
bered the treasure map that his late father Domnius had left him. Following
the instructions on the back of the map, he sailed to the island of Fumija and
found a stone with an engraved dead head. When he lifted the stone, he was
struck by a current. He did not notice that underneath the dead head there
was the inscription HIGH VOLTAGE! DANGER!. Thanks to the electric
shock he realised that he had made a mistake and soon he found the right
stone with its dead head. When he lifted it, underneath he found on im-
pregnated leather the rest of the instructions. They said “From this place
start walking towards the East and make double as many steps as you will
make later towards the South, and a hundred steps more. When you make a
total of five times more steps than what you made when walking towards the
South, the treasure will be under your feet. Love from your dad Domnius. ”
After a good cry in remembrance of his dear dad, who was much respected
by everyone as a diligent and pious pirate, he started to follow the instruc-
tions devotedly. But alas, he could by no means determine how far in which
direction he had to go. Finally, he sat down crestfallen on the stone and
remembered again his late dad. And it was only then that he understood
why his father kept constantly warning him he should learn math, and who
was now to blame that he did not listen to his dad? If you happen to arrive
on the island of Fumija (I will not tell you where this island is so that you
will not arrive there before me) and find the engraved dead head (that does
not warn of high voltage), how many steps will you take eastwards, and how
many southwards in order to find the treasure?
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Solution. If we translate this problem into math language, we will get a
simple equation. Let x be the number of steps that need to be taken south-
wards. It follows from the instructions that one should go 2x + 100 steps
eastwards. The instructions also say that the total number of steps east-
wards and southwards has to be 5 times greater than x. Hence,

x+2x+100=5x

We will solve the equation easily in the manner already described:

x+2x—-5x=-100 - -2x=-100/:(-2) — x=50

Thus, one should take 2x + 100 = 200 steps eastwards, and then take x = 50
more steps southwards. O

Here is (preventively) a little of math against electric shocks.

Example 3.8.5. Which resistor R has to be connected parallel with resistor
R1 =20 Ohm, if we want the total resistance of the parallel connection to be
R =10 Ohm?

Solution. We already know the formula for parallel connection of resis-
tance:

1 1 1

_— = 4 —

R R{ R
It connects the total resistance R with resistances R; and Ry of parallel
connected resistors. In the example 3.6.1 on page 137 we applied it for the
calculation of total resistance. We introduced into the formula the known
resistances R and Ro and calculated. Nobody now needs to give us a new
formula into which we will introduce R and R in order to calculate R5. Into

the existing formula we simply introduce the known values for R and Ry
and we solve the equation:

1 1 1 1 1 1 1 1
—_ — 4 — —»———:——»—:——>R2:20
10 20 Rs 10 20 Ro 20 Ro

Thus, in order to halve by means of parallel connection the initial resistance
of 20 Ohm, the other resistor also has to be 20 Ohm.
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Not only is it that nobody has to give us a new formula for calculation,
but we can deduce it by ourselves! In the same order in which we have solved
the equation, we can express Rg by means of R and R:

1_1 1 1 1 1 Ri-R_1 _ . _ RR
R R, R R R{ R RRi Ry 2" R-R

Once again we can see that our operations with variables rather than
the names of concrete numbers yield much more. Not only did we solve the
concrete problem but we also found the formula with which we can solve all
problems of such a type (the total resistance and one resistor are known, and
the other resistor needs to be found). Il

Using equalities (formulas) we frequently express the laws according to
which the quantities in certain situations are related. As an example, a sim-
ple law for a simple situation will be introduced now and we will see how
it helps us in connecting the quantities in more complex situations as well.
When a car moves uniformly at a certain speed v, it will in time ¢ travel the
distance s:

The mentioned values are connected by the following formulas:

S

S
s=v-t v = t=—
v

Every formula expresses a value by means of the others. But all these are
variants of one formula, and therefore not everything needs to be remembered.
It is sufficient to remember just one, for example the first:

s=v-t

If the speed of movement v and the elapsed time ¢ are given, by inserting
the values for v and ¢ we will easily calculate the travelled distance. If the
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elapsed time ¢ and the travelled distance s are known, in order to calculate
the speed v, we will insert the known values for s and ¢ into the formula
and solve the equation. Or even better, by transforming the formula we will
express the speed v by means of the distance s and time ¢, and then insert
the values:

S S
s=vt |t - —-=v — v=-
t t

Example 3.8.6. If a car travelled at a speed of 80 kilometres per hour, what

distance did it travel in — hours? How much time would a car need to cover

this distance by moving at a speed of 120 kilometres per hour?

Solution. Into the formula for the travelled path s = v-¢ we will insert speed

) 3
v =80 andtlmet:Z:

s=vt=80-§=60
4

Thus, the car travelled 60 kilometres.

In order to solve the second part of the problem, we will express ¢ by
means of s and v, and then we will insert s = 60 and v = 120:

S
s=vuvt |:v — t=-
v

60 1
Thus, t = —— = — hours.
120 2

The driver who was speeding and thus put himself and others in danger,
arrived only 15 minutes before the driver who drove at a moderate speed. It
is likely that he spent the time he had saved bragging about having arriving
quickly. As my friend Joe would say: in traffic the winner is not the one who
arrives earlier but the one who arrives at all.

The second part of the task could be solved by introducing into the initial
equation the known values for s and v, and then by solving the equation.
However, it is always better to express the required quantity by means of
the known ones (by solving the equation in the general manner), and only
then to substitute the values. This is how we develop the very powerful
ability of thinking with variables and discovering new relations between
quantities. ]
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Procedure of Finding an Unknown Value

When an equality connects some quantities one of which is unknown,
the unknown quantity can be found in the following way. We insert
into the equality values for the known quantities. We will get an equa-
tion and by solving it we will find the unknown quantity. However, it is
better to express the unknown quantity by means of the known quan-
tities, using the same procedure which is used to solve the equation,
and only then to insert values for the known quantities. In this way
we get not only the solution of the concrete problem but also a new
equality that solves all the problems of this type.

We will now apply the formula for uniform motion in the analysis of more
complex situations.

Example 3.8.7.

1. At the foot of the mountain Romeo was calling after Juliet, but the

1
only answer he got was his echo, and this with 35 seconds delay. If

sound travels at a speed of 330 metres per second, how far were the
mountain rocks from Romeo?

2. A train 70 metres long was passing over a bridge at a speed of 20
metres per second. Romeo was bored under the bridge waiting for
Juliet. He discovered that the bridge kept vibrating for a full 6 seconds.
He was bothered by the questions: Where is Juliet? How long is the
bridge? When will Juliet come?

3. When he saw Juliet, Romeo started to run fast and in 2 seconds he
had already reached a speed of 6 m per second. What distance did he
cover?

Solution.

1. Let us call the unknown distance to the rocks s. Since the speed
of sound is v = 330 metres per second, and the sound travel time is

7
t = 3= = = seconds, somebody could be misled by these symbols to

make the wrong conclusion that according to the formula for uniform
motion s = v-t. However, this is not so. Formulas cannot be formally
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applied. In order to be able to apply a formula correctly, we have to un-
derstand its content. We have to understand the meaning of the symbols
it contains, that is, the values that it connects. The formula for uniform
motion connects the movement speed v, the passed time ¢ and the dis-
tance covered during this period of time. In this case this distance is
not s but 2s, since during this period of time the sound travelled to the
rocks and returned back to Romeo. Thus, it travelled a distance of 2s.
Only by understanding the formula for uniform motion can we relate
correctly the unknown value s with the known values v and t:

2s=v-t

It is simple from this equation, dividing by 2, to calculate the required
distance from the rocks:

1 1 7 1
s=—vt=—=-330:-= =577— metres
2 2 2 2

. Where Juliet was and when she would arrive were things known only

to her. We can help Romeo only regarding the length of the bridge. For-
mulas are very efficient, but they are not omnipotent. In order to solve
the question of the bridge length we will set adequate equations. Ev-
erything spoken about has to be named. Even the known values should
be assigned symbolic markings because in this way our thinking is
more general and clearer. Therefore, we will call the train length [,
and the unknown length of the bridge d. Travelling at a speed of v,
during the bridge’s vibration the train travelled the distance of [ + d.

Therefore, according to the formula for uniform motion, the relation
among the mentioned values is as follows:

l+d=v-t
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When we subtract [ from both sides of the equation, the unknown
value d will be expressed by means of the remaining known values:

d=vt-1=20-6—-70 =50 metres

3. We cannot obtain s here according to the formula s=v-f =6-2 =12 me-
tres. The formula s = v - ¢ is valid, of course, only for uniform motion,
and we are talking here about accelerated motion. Thus, the formula
s =v-t cannot be applied here. If we assume that Romeo’s speed was
increasing uniformly, then we can use the formulas for uniform accel-
erated motion. It is known from physics that in such a situation the
travelled distance s depends on the passed time ¢, speed vg at the be-
ginning, and speed v at the end of the passed time ¢, according to the
next formula:

Uo+U
= 0 t
2

S

Since in our case the speed at the beginning was zero, it follows that

0+6
szT-2=6metres

How the Formulas are Applied

We often link the unknown value with the known ones by applying a
formula (equality) which expresses the law of the given situation. In
order to apply the formula correctly, we have to understand it. We
have to know in which situations it is applicable and which quantities
it links.

The SageMath command solve also helps us to express one quantity by

means of others from the given equality. For instance, from the formula for

1 1 1
the resistance of the connection in parallel — = — + — we can express the
R R:i R

resistance Ro by means of other resistances:

var(’R,R1,R2?)
show(solve(1/R==1/R1+1/R2,R2))
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We will obtain

RRy

Ro=—
2" "R-R,

Let us return to solving equations. The basic rule in solving equations
is simple and understandable: apply the same operation to both sides of the
equation. On this basis we can deduce other rules which are in certain situ-
ations simpler. Let us solve, for example, the equation 3x + 6 = 15:

3x+6=15 |[-6 — 3x=15-6 — 3x=9 |[:3

—_ X =— —_ x:3

3

The total effect of subtracting the number 6 on both sides of the equation is
that on the left side the adding of the number 6 is eliminated, and on the
right side the subtracting of the number 6 has appeared. The total effect of
division by the number 3 is that on the left side the multiplication by the
number 3 is eliminated, and on the right side the division by the number
3 has appeared. Thus, you can convince yourself of the correctness of the
following rules, and I believe you know them from school.

Moving Descriptions from One Side of the Equation to the
Other

® The description which on the one side of the equation is added
to the remaining part can be moved to the other side, where it is
subtracted from that side, and vice versa.

* The description of a non-zero number which on the one side of
the equation is multiplied with the remaining part can be moved
to the other side using it for the division of that side, and vice
versa.
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Example 3.8.8. Let us solve the following equations by the rules of trans-
posing:

3x
1. 2x—-3=4x-5 2. Z:

S| O

Solution.

x=— — x=1
-2
3x 5 5-4 10
2. — == - x==— - x=-— L
4 6 6-3 9

When we link the known and unknown quantities, it may happen that
we have several unknown quantities and several pieces of information about
them. Then the translation is not one equation, but a system of equa-
tions, several equations with several unknowns. The solution of a system
of equations (of a system of conditions) with, for example, two unknowns
(with two variables) is a pair of numbers which, when taken in order for
the values of variables, fulfil (satisfy) all the equations (conditions) of the
system. For instance, for the system of equations

x+2y=4
x—y=1

the pair (1,2) is not the solution because when instead of x we put the num-
ber 1 and instead of y the number 2 we will obtain false statements:

1+2-2=4
1-2=1

In the same way, the pair (0,2) is not the solution either, since, although it
satisfies the first equation, it does not satisfy the second one:

0+2-2=4
0-2=1

However, the pair (2,1) is the solution since it satisfies both conditions:
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2+2-1=4
2-1=1

In order to make it clearer which number in the pair we have replaced with
which variable, we also say that the solution of the system is the pair x =2
and y =1.

Example 3.8.9. In a forest by the road, the cruel Istrian Luciano’s gang
(Istria is a very peaceful part of Croatia) were relaxing. Along the path
the gang of an even more cruel Istrian, Jakob, came along. Respecting the
unspoken agreement on sustainable development they did not have a fight
but rather a friendly discussion. Luciano remarked “If you gave us one of
your men, we would have the same number of men as you.” Not wanting to
lag behind in this intellectual conversation Jakob answered “If you gave us
one man, we would have twice as many men as you.” They did not know that
Inspector Clouseau was sitting in the cavity of a tree, and noting everything
down carefully. But in the process, he clumsily elbowed a wasps’ nest in
the tree. The wasps stung him so many times that he could not in any
way conclude how many members each gang had. Let us help the clumsy
inspector.

Solution. Let us designate the number of people in Luciano’s group with L
and in Jakob’s group with /. Then the given information can be transformed
into the following equations:

L+1=J-1
L-1)-2=J+1

We have obtained two pieces of information about two unknowns. The per-
mitted steps in discovering the unknowns are the same as in the case of one
equation, but now we apply them to both equations. The strategy is as fol-
lows. We will use one equation in order to describe one unknown by means of
the other. For instance, L can be expressed from the first equation by means
of J:

L=dJ-2

Thus, we have used the first piece of information to describe L by means
of J. In this way we have reduced the problem to searching for J. When
we determine o/, from the above description we will easily calculate L. In
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order to find JJ, we will use the second item of information. True, it talks
also about L and about </, but now we know how to express L by means of
JJ. When in the second piece of information L is replaced by its description
by means of J, L =J — 2, it will talk only about J:

(J=-2-1)-2=J+1

Thus, we have reduced the problem of solving two equations with two un-
knowns to the problem of solving one equation with one unknown. Formally,
we achieved this by replacing L with the description by means of ¢/, and
this method of solving the system is called the substitution method. Now
we solve the equation with one unknown. We easily get that J = 7. Know-
ing J, from the description of L by means of J we will calculate also L:
L=J-2=7-2=5.

Dear Inspector Clouseau, Luciano’s gang has 5 members, and Jakob’s
has 7. Il

Method of Substitution

The method of substitution is the following procedure for solving a
system of equations:

1. We use one equation to express one unknown by means of the
remaining ones.

2. In all the other equations we replace this unknown with the ob-
tained expression.

3. We will get fewer equations with fewer unknowns.

4. With the obtained equations we repeat the procedure until we
get one equation with one unknown.

5. By solving this equation we will obtain not only its unknown,
but, going back to the previous equations, we will obtain all the
unknowns.
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The method of substitution is the
most efficient method of solving a sys-
tem of equations, but it is not omnipo-
tent. It may occur that in no equa-
tion can one unknown be substituted
by means of another one, or on the
other hand that we obtain an exces-
sively complex description. Then an
attempt is made to solve the system
in another way — by combination of
more complex equations into simpler
ones. I will illustrate this on the fol-
lowing system of equations:

4x+T7y=6
6x+11y=8

This system could be solved by the
substitution method, but the proce-
dure would get a little bit complicated
(try it). Instead, we will combine the
equations into a simpler one. Combin-
ing is founded on the logical property
of equality that the “same combina-
tion of equals yields equal”:

Li=Rqi,Lo=Ry —

C(L1,L9)=C(R1,R2)

where C is any operation (combination) of two numbers. For instance, if we
added the left sides of the equations and the right sides of the equations
(then we say that we have added the equations) we would get the equation

4x+T7y = 6
6x+1ly = 8 +
4x+Ty+6x+11ly = 6+8

The obtained equation is no simpler than the initial ones. However, if there
were opposite coefficients of one unknown, we would obtain a simpler equa-
tion, since this unknown would disappear from the equation. Therefore, we
will first multiply the equations by appropriate numbers so that we get op-
posite coefficients of one unknown. For instance, in order to obtain opposite
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coefficients of the unknown x, we will multiply the first equation by —3 and
the second by 2 (we will get + 12 — the smallest common multiple of the
existing coefficients 4 and 6):

4x+Ty = 3)

6 |-(-
6x+1ly = 8 |-2
Now that we have obtained opposite coefficients of the unknown, we will add
the equations:

~12x-21y = -18
12¢+22y = 16 |+
—12x+12x—21y+22y = -18+16

We have obtained a simple equation in which one unknown has disappeared:
y = —=2. If we introduce this value for y, for instance into the first equation,
we will get the corresponding x:

4x+7(-2)=6 — 4x=6+14 — «x=5

Thus, the solution of the system is the pair (5,—2). This method of solving
by combination is called the method of opposite coefficients. Naturally,
there are also other ways that combinations can be used.

Method of Opposite Coefficients

The system of two linear equations with two unknowns (the equations
of the form ax + by = ¢) is best solved by using the method of oppo-
site coefficients:

1. We multiply each equation with an appropriate number to ob-
tain opposite coefficients of one of the unknowns.

2. By adding the equations we obtain one equation with one un-
known, by which we determine this unknown.

3. We introduce the obtained value of the unknown into one of the
initial equations in order to get the respective value of the second
unknown.
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Example 3.8.10. Let us solve the following systems:

1. -3x+5y = 8

x+7y = 6
2. 2x—-4y =1
4x -8y = 2
3. =3x+2y = T
—6x+4y = 7T
Solution.

1. We will multiply the second equation by 3 in order to get the opposite
coefficients of the unknown x:

-3x+5y = 8
3x+21y = 18 +
26y = 26
—y =1

We insert the obtained value for y into the second equation:

x+7-1=6 — x=-1
The solution is the pair (-1,1).

2. We will multiply the first equation by —2 in order to get the opposite
coefficients of the unknown x:

—4x+8y = -2
4x—-8y = 2 +
0 =0

When we add the equations, not only does one unknown disappear,
but the second one disappears as well and we obtain something that
already know: that 0 = 0. The fact that the equations are cancelled by
addition means that they are very similar. Indeed, if we were to multi-
ply the first equation by 2 instead of —2, we would obtain precisely the
second equation:
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2x—-4y=1/-2 — 4x-8y=2

This means that the two equations (conditions) are equivalent (have
the same solutions), so that one is redundant (it does not provide new
information). We can forget it, since its solutions are identical to the
solutions of the remaining equation. Thus the solutions are all pairs
of numbers that satisfy this condition. If we express x by means of y

1+2
xXx=—
2 Yy

we can see that whichever number we take instead of y (e.g. y =1) we

5
will get an adequate value for x (for y =1, x = 5). Thus this system has

infinite solutions, all pairs of numbers of the form (5 +2y,y) where y

is an arbitrary number.

3. We will multiply the upper equation by —2 in order to obtain the oppo-
site coefficients of the unknown x:

6x—4y = -14
—-6x+4y = 7T +
0 = -7

Chasing the unknowns, we have obtained a falsehood! However, this
can be easily interpreted. Indeed, transforming from one set of equa-
tions to another by permitted steps is in fact, as we have already pointed
out, correct conclusion-making. It shows us that if for some x and y
(that we are searching for) the initial equalities are valid, then the fi-
nal ones are valid as well. If, however, the final equality is false, it
means that the initial set of equalities for any x and y fail to be ful-
filled either. We also say that the given set of equations (conditions) is
unsatisfiable or that it is contradictory. Thus, this system of equations
has no solution. O
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The command solve in the software SageMath also helps us in solving
systems of equations. Using it, we will solve, for example, the first system of
equations from the previous example, with the following command:

var(’y’)
solve ([-3*x+5*y==8,x+7*y==6] ,%,y)

We will get

[[X == _1’ y == 1]]

Example 3.8.11. A messenger pigeon started from town A towards town B
flying at a uniform speed of 20 km/h. At the same time (from town B towards
town A) there started a messenger dove flying at a speed of 15 km/h. If the
towns are at a distance of 7 km, at what point and when will the pigeon meet
the dove?
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Solution. Let us call the known speeds of the pigeon and the dove v{ = 20
km/h and vg = 15 km/h, and the distance of the towns d = 7 km. The un-
known paths that the pigeon and the dove had flown before their encounter
will be called s; and s9, and the time until the encounter ¢. We will apply
the formulas for uniform motion and the relationship between the distances
to connect the unknown values with the known ones:

S1=U1t So = U9t d=s81+89

Since the first two equations describe s; and sg by means of ¢, we will replace
with these descriptions s; and s9 in the third equation and get one equation
with one unknown:

d=vit+vet — d=(Wwi+v9)t —

; d 7km 1 = 12 mi
= = = — = min
vi+ve 20km/h+15km/h 5

Thus, the time until encounter is 12 minutes, and the covered paths of the
pigeon and the dove are

km 1 km 1
s1=v1t=20 E h=4km So=v9t =15 P h=3km

The command solve in the software SageMath helps us in solving the
system of equalities. Thus, from the system of equalities from the previous
example we will express the unknown values s{, sg and ¢ by means of the
known values v1, v9 and d by the following command:

var(’s1,s2,t,vl,v2,d’)
show(solve([sl==v1*t,s2==v2*t,d==s1+s82],s1,82,t))

We will get
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Let us dwell a little more on the application of equations in solving “ac-
tual” problems. A problem described in natural language was translated
into mathematical language. In this translation we named all the values we
did not know. Every item of information about unknown values was trans-
lated into one equation. In this linking of known and unknown values we
also used the laws (which are equalities) that “cover” this situation. The
translation was a system of equations, a well-defined problem in mathemat-
ical language for which we have simple means of solutions that enable us,
unlike in natural language, to efficiently find the solutions. However, in the
mathematical part we only solved the mathematical problem (found the so-
lutions to the system of equations). This does not necessarily have to be the
solution of the actual problem, since it is possible that we made a mistake in
translation, used false laws or maybe overlooked some important character-
istics of the situation. However, this is no longer a matter of mathematics
but rather of knowing the area to which mathematics has been applied. This
will be discussed in more detail in Circle 2.

The application of equations illustrates a typical method of applying
mathematics:

Typical Application of Mathematics

The actual problem, taking into account the laws of the domain of
the problem, with some simplifications and by means of the mean-
ing of mathematical notions, is translated from natural language into
mathematical language. The translation is a mathematical object (in
our case this was a system of equations). We also say that we have
obtained a mathematical model of the problem. In mathematical lan-
guage we usually have efficient formal methods that provide a solu-
tion. However, they give the solution to the mathematical problem.
This solution needs to be interpreted so as to see whether it is also the
solution to the actual problem. It is possible that the translation of the
actual problem into the mathematical problem was bad. However, the
translation skill is no longer simply a matter of knowing mathematics,
but also of knowing the context in which the problem has occurred.




3.8. Equations, Equalities and the Laws of Nature 173

Usually, several laws describe a certain situation, and not just one. We
use them in order to obtain new laws or in order to combine in the given situ-
ation several unknown values with the known ones. For a concrete example
we can take the situation of uniform accelerated motion.

Example 3.8.12. Uniformly accelerated motion is motion under the influ-
ence of constant force. As, for instance, when you accelerate uniformly the
speed of a car (and neglect the variation in air resistance at the change of
speed). Here, the speed v of the body rises uniformly according to the law

v =vg +at and the travelled path s increases according to law s = vyt + §at2,

where v is the initial speed, a is acceleration of the body and ¢ is the time
passed.

1. By eliminating ¢ let us find the connection between the remaining
quantities.

2. By eliminating a let us find the connection between the remaining
quantities.

Solution.

1. Let us express from the equation v = vy + at the time ¢ using the re-

.. v—V .. . .
maining values, ¢ = O, and let us eliminate it from the equation

a
1 2
s:vot+§at :

v—vo)_l_%a(v;vo)?

Applying the rules for equalities, we will get
v? = 002 +2as

2. Let us express from the equation v = vy+at the acceleration a using the

.. v .. . .
remaining values, a = O, and let us eliminate it from the equation
L o
s =vot+ —at”:
2

lv-v
S=volt+— 0,2
2
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Applying the rules for equalities, we will get

VotV
S = -t
2

Thus, from certain laws that describe a situation, we have derived new
laws for that situation! O

The last example illustrates the most important property of the language
of equalities:

The Language of Equalities and Laws of Nature

By measuring, we assign numbers to physical phenomena. These
numbers characterise the phenomena. Through these assignments
the laws of phenomena often occur as equalities between measured
values. Having efficient tools for work with equalities (simplifying
each side of the equality and applying the same operation to both sides
of the equality) we obtain from one set of equalities some others. Thus
we discover new laws in the considered phenomena.

In the SageMathTutorial on the web site of the book SageMath is de-
scribed in more detail how the equations in the software SageMath are
solved.

You can find more about application of equations in solving “real” prob-
lems at https://en.wikipedia.org/wiki/Word_problem_(mathematic
s_education)



