
5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 1/17

SAGEMATH

1 Purpose and Use
Microsot Word program, for example, cannot teach us to write but it can help us write. In the same way
SageMath program cannot teach us math but it can help us to do math. Mathematical software of this kind
liberates us from routine calculations. However, routine calculations cannot liberate us from understanding, as
some people thinks. This kind of software is today what there were logarithmic tables and calculators in the past.
And more than this - this kind of software a) performs more powerful numerical calculations, b) performs symbolic
calculations, and c) help us tu visualise problems in order to better understand what happens and to gain
qualitative answers.

From Wiki: SageMath (previously Sage or SAGE, "System for Algebra and Geometry Experimentation") is a
computer algebra system with features covering many aspects of mathematics, including algebra, combinatorics,
graph theory, numerical analysis, number theory, calculus and statistics.

From Official Sage Tutorial: Sage is free, open-source math software that supports research and teaching in
algebra, geometry, number theory, cryptography, numerical computation, and related areas. Both the Sage
development model and the technology in Sage itself are distinguished by an extremely strong emphasis on
openness, community, cooperation, and collaboration: we are building the car, not reinventing the wheel. The
overall goal of Sage is to create a viable, free, open-source alternative to Maple, Mathematica, Magma, and
MATLAB.

You can use SageMath basically in two ways:

1. You can use Sage Cell Server on the web page https://sagecell.sagemath.org
(https://sagecell.sagemath.org), type a command (or commands) in the cell and execute it (them) by
pressing shift + enter combination on keyboard. This is suitable for smaller tasks.

2. You can use a notebook, a file which consists of cells. For every cell you can determine its purpose: to be a
text cell for writing text or to be an input code cell to write commands. When you execute an input code cell,
the result will be put in corresponding output code cell. This document is such a file, and I am currently
typing the text in the text cell. A notebook is suitable for presentations or for more complex tasks. I use this
notebook for presentation of SageMath. You can create notebook files in a SageMathCloud by registering on
cocalc.com (it is free) or in your computer by downloading SageMath software from http://www.sagemath.org
(http://www.sagemath.org). If you want to use a notebook for SageMath tasks there is a lot of information on
internet to learn how to use it. For example on cocalc.com there is Help where you can find instructions
how to use notebooks and Markdown language for formatting text. When you need information about
SageMath commands, the reference manual of each function, constant or command is accessed by writing
the question mark "?" after its name. If you type "??" insted of "?", the corresponding source code will be
displayed. If you write the first letters of the word and press the tab key, you will get all command names
starting with these letters.

For users who use Python programing language: SageMath is an extension of Python language, so you can type
Python code in code cells. For example, in code cells, commments begin with "#".

https://sagecell.sagemath.org/
http://www.sagemath.org/

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 2/17

2 Basic Arithmetic
Arithmetic operations are typed as on a calculator. The sign for multiplication is "*", the sign for division is "/" and
the sign for exponentiation is "^". Let's start with integers. The sign for integer division (division with reminder) is
"//" for the result, and "%" for the reminder. There are no limits on the size of an integer.

In [1]: 1+2^2*13 #The hierarchy of operations is the standard one: if there is am

biguity in an expression, first do exponentiation, then multiplication an

d division, and then addition and subtraction.

In [10]: (1+2^2*13)//10, (1+2^2*13)%10 #You can type several commands separated by

comma. The results are displayed consecutively:

If we put commands on different lines, SageMath will show in the output code cell only the result of the last
command:

In [21]: (1+2^2*13)//10

(1+2^2*13)%10

If we want to see all results we must add command print :

In [22]: print((1+2^2*13)//10)

(1+2^2*13)%10

We can use relations < (less), == (equal), != (not equal), <= (less or equal), and >= (greater or equall) which we
can combine with connectives or, and and not. The sign of equality = has not standard meaning but
programmer's meaning - it means assignment. For example, $x = 3$ means that variable x will get value 3.

In [2]: 1==2 or 2==2

We can factorize:

Out[1]: 53

Out[10]: (5, 3)

Out[21]: 3

5

Out[22]: 3

Out[2]: True

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 3/17

In [2]: 48.factor() # Python users will recognise this syntax, the so called meth

od notation, when the sign of operation is placed after the name of objec

t on which it acts.

Command show gives a nicer expression:

In [6]: show(48.factor())

We can find the greatest common divisor (gcd) and the least common multiple (lcm) of two numbers:

In [11]: gcd(246,48), lcm(246,48)

Let's calculate with rational numbers:

In [7]: 2/3+1/6

In [8]: show(2/3+1/6)

Real numbers have standard decimal or scientific notation and we can calculate them up to a given precision.
The command for numerical aproximation is n. For example, if we want to aproximate number π (denoted pi
in SageMath), we can use the function notation n(pi) or the method notation pi.n() . With the optional
parameter digits we can determine which number of digits we want to get in the approximation. Even better, the
optional parameter round determines the precision of the approximation: how much decimal places after the
period we want (the last digit is rounded).

Out[2]: 2^4 * 3

Out[6]:

Out[11]: (6, 1968)

Out[7]: 5/6

Out[8]:

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 4/17

In [3]: print(pi) #SageMath will do nothing, because it doesn't know better notat

ion for pi

print(pi.n()) #the method notation

print(n(pi)) #the function notation

print(pi.n(digits=5))

print(pi.n(digits=30))

print (round(pi,4)) # there is no the method version for command "round".

print(1.2e3*2.1e2) # This is a scientific notation: 1.2e3 means 1.2*10^3

We can translate (approximately) fractions to decimals and vice versa.

In [29]: print(n(2/3))

print(Rational(n(2/3)))

print(Rational(n(pi)))

print(Rational(0.25))

For the square root we have command sqrt . For higher roots we must use exponential notation. If we want the
exact result, SageMath will give us in some sense the best possible notation for the result:

In [30]: print(sqrt(8))

print(8^(1/3))

print((-8)^(1/3))

pi

3.14159265358979

3.14159265358979

3.1416

3.14159265358979323846264338328

3.1416

252000.000000000

0.666666666666667

2/3

245850922/78256779

1/4

2*sqrt(2)

2

2*(-1)^(1/3)

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 5/17

3 Basic Algebra
In SageMath we distinguish constants and variables in a mathematical sense. A constant is a name of a
specific object, while a variable is a name of an intentionaly unspecified objects. In imperative programming
terminology constants are called variables because we can change its value during the execution of a program,
while variables in a mathematical sense are called symbolic variables. We will follow mathematical terminology.

By assignment statement we determine the value of a constant. For example, the assignment statement $a= 3$
determines the value of constant a to be 3.

Variables have to be declared by a declaration statement. For example, with statement var('b') we declare
'b' to be a variable. By defualt x is considered as a variable.

In [1]: a=3

var('b')

print(a)

print(b)

print(a+b)

print(a+b+x)

Using variables, we can write open descriptions in SageMath (expressions which contain variables), insert values
for variables, and simplify descriptions.

In [2]: var('a,b') # We declared two variables.

print(a^2+a*b+3*b)

print((a^2+a*b+3*b).substitute(a = 2, b=3)) # After the substitution Sage

Math calculates the closed expression (expression without variables).

print((a^2+a*b+3*b).substitute(b=a)) # After the substitution SageMath s

implifies the open expression.

Command expand "multiplies brackets":

In [38]: var('a,b') # We could inherit this declaration from the previous code cel

l but for the presentation it is better that every cell is maximally inde

npendent.

((a+b)^3).expand().show()

3

b

b + 3

b + x + 3

a^2 + a*b + 3*b

19

2*a^2 + 3*a

Out[38]:

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 6/17

We can factorise descriptions:

In [39]: var('a,b')

(a^3 + 3*a^2*b + 3*a*b^2 + b^3).factor().show()

We have at disposal command simplify in various forms:

In [40]: ((x+1)^2/(x*(x+1))).expand().show()

((x+1)^2/(x*(x+1))).simplify().show() # simplification

((x+1)^2/(x*(x+1))).simplify_rational().show() # Simplify_rational() tran

sforms an expression into a quotient of two polinomials

((x+1)^2/(x*(x+1))).simplify_full().show()

In [42]: var('a,b')

(a/(b*(a+b))-b/(a*(a+b))).expand().show()

(a/(b*(a+b))-b/(a*(a+b))).expand_rational().show()

(a/(b*(a+b))-b/(a*(a+b))).simplify().show()

(a/(b*(a+b))-b/(a*(a+b))).simplify_rational().show()

(a/(b*(a+b))-b/(a*(a+b))).simplify_full().show() # This is the best-.

In [43]: var('a,b')

(a/((a + b)*b) + b/((a + b)*a)).simplify().show()

(a/((a + b)*b) + b/((a + b)*a)).simplify_rational().show()

(a/((a + b)*b) + b/((a + b)*a)).simplify_full().show()

(a/((a + b)*b) + b/((a + b)*a)).simplify_rational(algorithm='noexpand').s

how()

Out[39]:

Out[40]:

Out[40]:

Out[40]:

Out[40]:

Out[42]:

Out[42]:

Out[42]:

Out[42]:

Out[42]:

Out[43]:

Out[43]:

Out[43]:

Out[43]:

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 7/17

Sometimes, command collect() is useful:

In [48]: (x^2*exp(x)+2*x*exp(x)).collect(exp(x)).show()

We can group terms with common denominator with command combine :

In [45]: (1/x + (x+2)/x).combine()

To simplify expressions with roots we use command canonicalize_radical()

In [47]: (sqrt(x^2+x)/sqrt(x)).canonicalize_radical().show()

We can define functions (operations) in a standard mathematical way, by a formula which determines what to do
with an input to the function to get the corresponding output. For example

In [4]: f(x)=x^2

(f(x)).show()

f.show()

(f(2)).show()

var('a,b')

(f(a+b)).show()

4 Basic Plotting
We can plot graphs of functions and equations with two uknowns in Cartesian coordinate system using command
plot . We must describe what we want to plot and on what domain of numbers. Furthermore, we can specify

optional arguments: the appareance of axes, axes marks. the graph title, color of plotted curves, etc.

For example, we will plot function $f(x) = x^2$ on interval [-2,2]:

Out[48]:

Out[45]: (x + 3)/x

Out[47]:

Out[4]:

Out[4]:

Out[4]:

Out[4]:

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 8/17

In [5]: plot(x^2, (x,-2,2))

If we want to have the same units on both axes, we must specify the aspect ratio:

In [6]: plot(x^2, (x,-2,2), aspect_ratio = 1)

Out[5]:

Out[6]:

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 9/17

If we want to see better the input - output pairs, we can plot a grid:

In [7]: plot(x^2, (x,-2,2), aspect_ratio = 1, gridlines = 'minor')

And this is a more elaborated display:

Out[7]:

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 10/17

In [8]: plot(x^2, (x,-2,2), aspect_ratio = 1, gridlines = 'minor', axes_labels =

['x','y'], legend_label = 'function $f(x) = x^2$')

We can plot several graphs:

In [9]: plot(x^2, (x,-2,2), aspect_ratio = 1)+plot(1-x^2,(x,-2,2), color = 'red')

Out[8]:

Out[9]:

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 11/17

Also, we can plot curves:

In [11]: var('y')

implicit_plot(x^2+y^2==1, (x,-2,2),(y,-2,2), aspect_ratio = 1)

We can add gridlines and axes:

Out[11]:

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 12/17

In [13]: var('y')

implicit_plot(x^2+y^2==1, (x,-2,2),(y,-2,2), aspect_ratio = 1, gridlines

='minor', axes = true)

and remove the frame:

Out[13]:

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 13/17

In [14]: var('y')

implicit_plot(x^2+y^2==1, (x,-2,2),(y,-2,2), aspect_ratio = 1, gridlines

='minor', axes = true,frame = false)

5 Solving Equations

We use command solve for solving equations: we must specify which equation to solve and for which
variable.

In [15]: solve(x^2==2*x,x)

In [16]: var ('a,b')

solve(a*x==b,x) #This will not be completely correct because the case a =

0 is not considered separately.

In [18]: var ('a,b,c')

show(solve(a*x^2+b*x+c==0,x)) # a != 0

Let's try to solve cubic equation:

Out[14]:

Out[15]: [x == 0, x == 2]

Out[16]: [x == b/a]

Out[18]:

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 14/17

In [20]: var ('a,b,c,d')

show(solve(a*x^3+b*x^2+c*x+d==0,x))

Oh, no. Let's solve a specific cubic equation:

In [21]: show(solve(x^3+x^2+x-2==0,x))

Oh, no (once again). Let us single out the third solution on the right hand side (rhs). SageMath counts from zero,
so this solution has index 2.

In [23]: show(solve(x^3+x^2+x-2==0,x)[2].rhs())

It will be better to find a numerical approximation:

In [26]: print((solve(x^3+x^2+x-2==0,x)[2].rhs()).n())

round(solve(x^3+x^2+x-2==0,x)[2].rhs(),6)

We could have done it more simply by naming the result of the solution:

In [27]: lr=solve(x^3+x^2+x-2==0,x)

show(lr[2]) # it displays the third member of the solutions list.

show(lr[2].rhs()) # it displays the right hand side of the third member

of the solutions list.

show(round(lr[2].rhs(),6)) # the numerical aproximation of the right hand

side of the third member

Let us solve the following equations:

Out[20]:

Out[21]:

Out[23]:

0.810535713766137

Out[26]: 0.810536

Out[27]:

Out[27]:

Out[27]:

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 15/17

In [3]: show(solve(x^5+x^4==x+1,x))

show(solve(x^5+x^4==x-1,x))

SageMath solved the first equation, while the second did not. In cases when the solve command fails to solve
an equation analytically (it does not give us an exact solution), whether that equation cannot be solved
analytically at all, or it can, but the solve command does not have an implemented method, then we must
resort to numerical solution. But it is better to solve the equation qualitatively first, find out how many solutions
there are and where they are approximately. For real solutions of the equation we have a simple procedure. Let's
move all the members of the equation to one side of the equation:
$$x^{5}+x^{4}-x+1=0$$

The solutions of the equation are zeros of the function (any input for which the function returns zero) determined
by the expression on the right side of the equation:
$$f(x)=x^5+x^4-x+1$$

The zeros of a function can be qualitatively determined on its graph - these are the common points of the graph
of the function and the $ x $-axis:

In [3]: plot(x^5 + x^4 - x + 1, (x,-2,1))

Examining the graph for lesser and greater values for $ x $ we can see that the function has only one zero which
is approximately equal to $ -1.5 $. Using the find_root command, we can numerically approximate it to the
desired accuracy:

Out[3]:

Out[3]:

Out[3]:

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 16/17

In [1]: find_root(x^5+x^4==x-1,-2,-1) #SageMath displays 17 reliable digits

In SageMath we can also solve multiple equations with multiple unknowns.

In [5]: var('y')

show(solve([x^2+y^2==1,y==x^2],x,y))

We will qualitatively examine the real solutions by drawing graphs of these equations. The solutions are the
coordinates of the common points of these graphs.

In [7]: var('y')

implicit_plot(x^2+y^2-1==0,(x,-2,2),(y,-2,2))+implicit_plot(y-x^2==0,(x,-

2,2),(y,-2,2), gridlines='minor', axes =true, frame = false)

Out[1]: -1.4970940487627966

Out[5]:

Out[7]:

5/9/2021 SageMathTutorial-1

file:///home/user/SageMathTutorial-1.tmp.html 17/17

We see that the solutions are approximately $ (0.8,0.6) $ and $ (- 0.8,0.6) $. We will now use the findroot
command to specify the first solution to default SageMath precision (we can see from the symmetry that the
second solution differs from the first only in the sign of the first number). However, the findroot command
requires a little more preparation:

1) it is not part of the standard SageMath tool, so we must import it from the appropriate program module mpmat.

2) we must move all members of each equation to one side of the equation and define a list of functions assigned
to those sides using the lambda notation (the notation is explained in the first chapter of the book
UNDERSTANDING AND DOING MATH - CIRCLE 2).

In [5]: from mpmath import findroot # we import the command from the specified m

odule

findroot([lambda x, y: x^2+y^2-1, lambda x, y: y-x^2],(0.8,0.6)) # we imp

ort the list of corresponding functions and give the initial guess

Out[5]: matrix(

[['0.786151377757423'],

 ['0.618033988749895']])

