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Abstract

Education in statistics, the application of statistics in scientific re-
search, and statistics itself as a scientific discipline are in crisis. Within
science, the main cause of the crisis is the insufficiently clarified con-
cept of probability. This article aims to separate the concept of prob-
ability which is scientifically based from other concepts that do not
have this characteristic. The scientifically based concept of proba-
bility is Kolmogorov’s concept of probability models together with
the conditions of their applicability. Bayesian statistics is based on
the subjective concept of probability, and as such can only have a
heuristic value in searching for the truth, but it cannot and must not
replace the truth. The way out of the crisis should take Kolmogorov
and Bayesian analysis as elements, each of which has a well-defined
and limited use. Only together with qualitative analysis and other
types of quantitative analysis, and combined with experiments, they
can contribute to reaching correct conclusions.
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Probability is the most important concept in modern science, espe-
cially as nobody has the slightest notion what it means.

Bertrand Russell, 1929 Lecture – cited in [Bell, 1945, p. 587]

In our days, serious arguments have been made from data. Beau-
tiful, delicate theorems have been proved, although the connection
with data analysis often remains to be established. And an enormous
amount of fiction has been produced, masquerading as rigorous sci-
ence.

David A. Freedman [Freedman, 1995, p. 35]

“. . . Bayesianism may survive for a while, along with mind-body
dualism, many-worlds metaphysics, and other philosophical extrava-
gances. Meanwhile let us hope that it will be gradually discontinued
in the law, medicine, seismic engineering, policy-making, and other
fields where lives are at stake.

Mario Bunge [Bunge, 2008, p. 173]

Published research findings are sometimes refuted by subsequent ev-
idence, with ensuing confusion and disappointment. Refutation and
controversy is seen across the range of research designs, from clini-
cal trials and traditional epidemiological studies to the most modern
molecular research. There is increasing concern that in modern re-
search, false findings may be the majority or even the vast majority of
published research claims.

John P. A. Ioannidis [Ioannidis, 2005, p. 0696]

It was most difficult to work when in the Republic of Croatia we had
a “bus of the dead” every day, and in Split, one such bus would “ar-
rive” every week. There was too much unnecessary dying, and such a
situation throws you into depression and you keep repeating the same
question to yourself :

Is it possible that people do not understand and would rather die
than get vaccinated?

And dying from corona is awful, painful. It’s not death from a heart
attack where it “cuts you off” and that’s it, you’re gone. Here people
suffer and die in terrible agony.

Ivo Ivić (Slobodna Dalmacija newspaper, 25. 03. 2022.)

8



The concept of probability

1 Introduction
The above quotes are quotes from people who know what they are talking

about, from the famous philosophers Bertrand Russell and Mario Bunge, through
the famous statisticians David A. Freedman and John P. A. Ioannidis, to Associate
Professor Ph.D. Ivo Ivić, head of the Clinic for Infectiology of KBC Split and head
of the COVID Hospital in Križine. Each of the quotes testifies to one aspect of the
crisis in statistics. The first quote testifies to the insufficiently clarified concept
of probability on which statistics is based. The second and third quotes testify
that there is a crisis in statistics itself as a scientific branch. The main source of
this crisis is the conflict (in Mayo [2018], the term ”statistical wars” is even used)
of two schools of statistics, classical (frequentist) and Bayesian statistics. The
theoretical basis of this crisis is a different understanding of the concept of proba-
bility. The fourth quote testifies to a true inflation of bad application of statistics in
scientific research: impossibility of replication and reproduction, incorrect imple-
mentation and interpretation of statistical procedures, but also misuse of statisti-
cal tests, problem of p-values, irresponsible Bayesianism, etc. (see e.g., Ioannidis
[2005], Peng [2015], Greenland et al. [2016], Wasserstein and Lazar [2016]). In
addition to various sociological reasons, which burden the scientific community,
the reason for this is insufficient understanding of statistics itself, its methods and
concepts, which are based on the concept of probability. The last quote testifies
that a misunderstanding of science, above all the role of statistics in science, can
have profoundly serious consequences. This quote, together with the preceding
one, also refers to a crisis in education, especially in statistics education. Statis-
tics education has a significant impact on the use of statistics both in scientific
research and in making decisions in everyday life. Its most important task is to
teach correct understanding of the concept of probability.

Thus, if we look at the internal reasons for the crisis (reasons that concern
science itself), the main source of the crisis is in the insufficiently clarified concept
of probability. The aim of this paper is to contribute to the separation of the
concept of probability, which is scientifically based and verifiable, from other
concepts that do not have these characteristics. The concept of probability that
will be separated also gives answers to the question of when probability can help
us describe and control reality and when it cannot. These answers allow us to
identify the cause of the crisis in statistics: the wrong application of the concept of
probability and, even worse, the application of the concept of probability where it
is not applicable. These answers also give us guidelines for overcoming the crisis
in statistics in all the aforementioned aspects.

In Section 2, the scientifically based concept of probability will be described.
In essence, it is a mathematical probability model which, together with the condi-
tions of its application, was established by Kolmogorov in 1933. The conditions

9
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of its application determine how probability can and cannot help us. In Section 3
it will be described how this concept of probability affects the crisis in statistics.
In Sections 4 and 5 it will be explained why some other concepts of probability are
not scientifically based. Special attention will be paid to the Bayesian concept of
probability, which, although not scientifically based, has a certain heuristic value,
but also carries great danger.

Although this article covers a wide area, its main topic is the role of math-
ematical models and their application in the field of probability and statistics. I
see the originality of the paper in 1) the explanation of Kolmogorov’s concept
of probability as a concept of probability based on a certain mathematical mod-
elling of random phenomena, 2) the argumentation that Kolmogorov’s concept
of probability is fundamentally different from all other concepts of probability,
including frequentism with which it is usually identified, 3) and the argumenta-
tion that Kolmogorov’s concept of probability is the only scientifically based and
verifiable concept of probability. However, the main message of the work is that
Mark Twain’s words “There are three kinds of lies: lies, damned lies, and statis-
tics” returns to us today in a dramatic way: instead of significantly helping to
overcome the crisis into which modern society has fallen, today statistics signif-
icantly contribute to the crisis. It is vitally important that statistics are developed
and practised responsibly, and not that falsehoods are generated under the guise
of science. A correct understanding of the concept of probability is crucial here.

2 Mathematical probability models and conditions
of their application

It is usually stated that Kolmogorov formulated the axioms of probability the-
ory in 1933 (Kolmogorov [1956]). The interpretation he gave to these axioms is
rarely mentioned because it is viewed to only express von Mises’ frequentism.2 In
the next section, I will argue that this view is wrong. In this section, Kolmogorov’s
formulation of the concept of a mathematical probability model and the conditions
of its application will be briefly presented.

It is common to consider that determinism and randomness are mutually con-
tradictory concepts. But is it so? We say that a process takes place deterministi-
cally if its future state is completely determined by the initial state. For example,
the falling of an object from a certain height is determined by the initial conditions.
If, under the same conditions, the process takes place in different ways, then we
are talking about a random phenomenon. Example: rolling a die. However, when

2“Although Kolmogorov never abandoned his formulation of frequentism, his philosophy has not
enjoyed the enduring popularity of his axioms.” Shafer and Vovk [2006].
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we release a body from a certain height (always the same initial condition), if we
were to measure the time of its fall with sufficient precision, we would always get
a slightly different result, because the fall depends on a multitude of factors that
we cannot control (air resistance, movement of the air mass, shape of the body,
etc.). Thus, the randomness is also present here, although determinism is dom-
inant. On the other hand, if when rolling a die, we could accurately determine
the initial conditions of the throw, according to the laws of classical physics, the
motion of the die takes place deterministically. Determinism is also present here,
although randomness dominates.

Determinism and randomness are always present, the only question is which
one dominates. Thus, they are more complementary than conflicting concepts.
Moreover, in science, the question of determinism and randomness arises not so
much as a question of what nature is like, but more as a question of how we will
describe a particular phenomenon, in a deterministic or stochastic way. That is
why we will talk bellow about deterministic and stochastic (probabilistic) models
of description of nature. In specific situations, a model of a certain type (or a
combination of models of different types) should be selected to provide a satisfac-
tory description of the situation. Even the basic physical theories about the world,
classical physics and quantum physics, are big models of this type. One is based
on determinism, the other one on randomness. According to classical physics, the
world is deterministic, and randomness is the result of our inability to control all
parameters of a process. According to quantum physics, in its standard interpreta-
tion, randomness is a necessary part of the description of the world: we can only
determine the probabilities that something will happen.

Deterministic models are, mathematically speaking, sets of functions that de-
termine some quantities using other quantities. That is why the mathematics of
deterministic models is in the essence the mathematics of functions. Mathematics
can offer various models, and the person who applies them must determine which
models are good enough for his problem. How to use mathematical models is
no longer a matter of mathematics but a part of science that deals with a certain
phenomenon. For example, in the case of a fall in vacuum on the Earth’s surface,
mathematics can offer various models of how the distance travelled s depends on
the time of fall t:

s = kt, s = kt2, s = kt3, s =
k

t2
, s = k ln(at), . . .

Physics has chosen the model that corresponds to reality: s = 1
2
gt2, where g =

9.81ms −2. However, this model is an approximation because g depends on the
location on the Earth’s surface, and we can determine g most precisely experi-
mentally. If we analyse the real situation, the fall of a body somewhere on the
Earth’s surface, then we have to take air resistance into account. The previous
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formula is now only approximately good for heavier bodies and lower speeds. If
the speeds are higher, then air resistance is more prominent, and we need a more
complicated model that gives us more accurate results. However, this still remains
an approximate solution. A model that would provide a more accurate solution
should include airflow, temperature, humidity, pressure, vibrations, the shape of
a falling body, etc. Increasingly accurate models would be increasingly compli-
cated. But no matter how complicated they are, they could not describe the most
ordinary fall of leaves in autumn under a gust of wind. The deterministic models
lose their power of description because now we encounter a random phenomenon:
under the same initial conditions that we can control, the leaves will fall in differ-
ent ways. Thus, to get an even more precise model, we would have to include a
corresponding probability model.

This example illustrates the general situation. The goal of any modelling is to
find the simplest possible model that gives accurate enough results for our needs.
When we create a model, we try to test it by comparing the values it predicts with
the values we determine experimentally. If this match is good enough, that is, if
from the point of view of the problem we want to solve, the obtained deviations
are negligible, then we accept that model. If not, then we look for a better model,
which is often more complicated. The same applies to probability models.

To describe random phenomena, mathematics offers probability models. For
a simple illustration I will use the roll of an irregular traditional die. We specify a
random phenomenon by specifying the conditions under which it takes place (for
the die, we must precisely define the conditions under which the die is rolled).
To the specified random phenomenon, we associate the outcomes space (sample
space), a set whose elements we call outcomes. The only condition for the out-
comes space is that exactly one outcome is associated with each realization of
the random phenomenon. We can associate various outcomes spaces to the same
random phenomenon depending on what we are interested in. For the die, it is
usually the set {1, 2, 3, 4, 5, 6}, but it can also be the set {even, odd}, if we use
the die to make a binary choice. We describe events with words that set conditions
on outcomes (e.g., that a number divisible by 3 will be rolled), and “officially” de-
fine events as sets of outcomes that satisfy a given condition (divisibility by 3
gives the set {3, 6}). We cannot predict what will happen in a single roll of the
die. However, a regularity emerges in the sequences of rolls. In each sequence
of rolls, we can associate a relative frequency

nD

n
to the event D, where nD is

the number of rolls in which D occurred, and n is the total number of rolls in the
given sequence. It is an experimental fact that for each such sequence of rolls the
relative frequencies are approximately the same. The higher the number of rolls,
the better the grouping of the frequencies. The number around which the relative
frequencies are grouped is called the probability of the event D and denoted by
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P (D). That number is not uniquely determined by the grouping, but we postulate
it. The meaning of this number is that it approximates (estimates) the relative
frequency of the event D in a sequence of rolls:

P (D) ≃ nD

n
It follows from this meaning that the probability function P, which associates a
probability with each event, cannot be an arbitrary function. Given that it approx-
imates relative frequencies, it must have properties of relative frequencies for a
given sequence of rolls. Such are the following properties, which we call proba-
bility axioms, because other properties can be derived from them:3

1. 0 ≤ P (D) ≤ 1

2. P (∅) = 0, P (Ω) = 1

3. A ⊆ B −→ P (A) ≤ P (B)

4. For mutually exclusive events A and B, P (A ∪B) = P (A) + P (B)

where Ω is the outcomes space.
By modelling the random phenomenon of rolling an irregular die, we arrived

at the (almost) general concept of Kolmogorov’s probability model of a random
phenomenon. A finite probability model consists of:

• a non-empty finite set Ω which we call the outcomes space, its elements
outcomes, and its subsets events,

• and the function P, which we call probability, which assigns a number to
each event, whereby the above axioms of probability must be fulfilled.

Here we limited ourselves to finite models because infinite models (e.g., random
selection of a point from a geometric figure) have somewhat more complicated
mathematics, while the basic ideas are the same as for finite models.

As with deterministic models, mathematics offers various probability models
too. By choosing a non-empty set and a function that assigns a real number to each
subset, where the function satisfies the stated axioms, we obtained a probability
model. The main problem is to choose a model for a given random phenomenon
that describes the phenomenon well. The basic criterion for the correct choice of
a probability model, set by Kolmogorov in 1933 ([Kolmogorov, 1956, p. 5-6]),
is that the probability P (D) of an event D must match well enough the relative
frequencies of the event in a sequence of repetitions of the random phenomenon:
3These axioms are not independent: the third property and one of the properties under 2. can be
derived from the other properties.
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P (D) ≃ nD

n
(1)

What is “well enough”? The answer is the same as with deterministic models:
from the point of view of the problem we want to solve, the deviations must be
negligible. This approximate equality is the basic connection between a proba-
bility model and reality, the basic criterion for the usability of the model in the
description of a given random phenomenon. Thanks to this connection, the use
of probability models is as firmly scientifically based as the use of deterministic
models. On the one hand, if we know from some theory or experiment the proba-
bility of an event, then by this connection we can estimate the relative frequency
of its occurrence in a series of repetitions of a given random phenomenon. On the
other hand, if we determine the relative frequencies of events through experimen-
tation, then by this connection we can estimate their probabilities. If we analyse
how probability is used in classical statistics, we will see that it is precisely this
concept of probability.

Let us not forget that the basic assumption of this modelling is that a random
phenomenon can be replicated an arbitrary number of times. Thus, Kolmogorov’s
overall conception sets two criteria for the usability of probability models:

• the basic condition for applicability of probability models: probability mod-
els can be applied to random phenomena that can be replicated an arbitrary
number of times.

• the basic condition for the correct choice of a probability model for a given
random phenomenon: the probability of an event must match well enough
with the relative frequencies of the event in a sequence of repetitions of the
random phenomenon.

When the stated conditions are met, probability models successfully describe what
will happen in a sequence of repetitions of a random phenomenon. This is con-
firmed by the exceptional success of these models in statistical mechanics and
quantum physics, but also in industry, including the “industry” of insurance com-
panies and games of chance. By taking a random sample from a population, the
success of these models is extended to biology, medicine, and social sciences.
By ensuring that each individual has the same probability of being selected into
the sample, the population parameters become the parameters of the probability
model of random selection of an individual from the population. Then the ba-
sic connection (1) relates the relative frequencies in the entire population to the
relative frequencies in the sample. However, the problem of obtaining a random
sample arises here. The deviation of the actual sample from a random sample can
drastically devalue the obtained results.
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The basic connection (1) between a probability model and reality also tells us
when probability cannot help us in describing, predicting, and controlling reality.
A typical such situation is a single realization of a random phenomenon (e.g.,
which number will fall in one roll of a die). In a particular case, an event will
happen or not happen. Except in some extreme situations, probability cannot tell
us whether an event will happen or not. It is the so-called problem of the single
case. Extreme situations are when the probability of an event is close to 0 or 1 to a
few hundredths or smaller. If the model is good, in the first case we can practically
be sure (Kolmogorov’s term) that the event will not happen, while in the second
case we can practically be sure that it will happen. Likewise, if the probabilities
of the event are close to those extreme values, and we must make a decision, then
it is more reasonable to make the decision that the event will not happen (if the
probability is close to 0) or that it will happen (if the probability is close to 1),
although we do not have absolute certainty.

Take, for example, the problem of vaccination, which dominated the Covid-
19 pandemic. Roughly speaking, the data show that the probability that someone
will die from vaccination is at most in the order of millionths, and that they will
die from Covid-19 (unvaccinated, because the vaccinated are practically certainly
protected) during a pandemic is in the order of thousandths. According to this
rough but basically correct model, in a larger population, such as a population of
4 million people, roughly the size of Croatia, if everyone chooses not to vacci-
nate, about 4000 will die, and if everyone chooses to vaccinate, about 4 will die.
Thus, at the level of the whole society (population), it is correct to recommend
vaccination. This will save thousands of lives. But what about the individual? A
choice that is good for the whole society is not necessarily good for an individual.
Although both probabilities are exceedingly small, the probability that an individ-
ual will die from vaccination is a thousand times smaller than they will die from
Covid-19, and it is reasonable, if we have no other knowledge, to choose vaccina-
tion. Although probabilities cannot deprive us of uncertainty in single cases, they
are still an important indicator that tells us which decision is more reasonable to
make.

The above probability model of the Covid-19 pandemic has another significant
drawback related to the probability it assigns to the occurrence of an event in a
particular case. This is the so-called problem of the referent random phenomenon:
the probability of an event depends not only on that event, but also on the random
phenomenon in relation to which we observe it. The model assigned the proba-
bility of death from Covid-19 to an individual in relation to the entire population.
If we narrow the population to which that person belongs by setting additional
conditions (age, specific health problems, ...) then this probability changes and
increasingly suits that person. For example, the following graph (Figure 1) shows
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what percentage of people in each age group in Croatia died from Covid-19.4

Figure1: Mortality by age group

These percentages estimate the probabilities that someone in each age group will
die from Covid-19. In relation to the probability of death from Covid-19, which is
about one thousandth for the entire population, for the population of people over
70 years old the probability is drastically higher, about one hundredth, and for
those under 30 years drastically lower, about one hundredth thousandths. For an
individual, the probability for his age group better describes his chance of dying
from Covid-19 than the probability for the entire population. This dependence
of the probability of an event on the population in relation to which we observe
it has no effect on the estimates of the relative frequencies of the event in the
populations, but it influences the significance of the probability for an individual.

Despite these shortcomings of the concept of probability related to predicting
what will happen in an individual case – that probability makes predictions only
for the population and not for the individual, and that this probability depends on
the population to which the individual belongs – we can still apply this under-
standing of the concept of probability to the decision to vaccinate. Ideally, for
each individual, we could determine such a narrow reference population to which
they belong, and for which the probability of death from vaccination for a person
from that group is equal to 1 (everyone from that group will die if vaccinated)

4The graph is derived from the data on the 2021 population census of the The Croatian Bureau of
Statistics and data on mortality from COVID-19 from the Croatian Institute of Public Health.
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or 0 (everyone from that group will not die if vaccinated). If science could find
such a narrow group for each person, then we would know exactly who can and
who cannot receive the vaccine. However, too many parameters are involved, and
the processes are too complex for us to have full understanding and control over
the outcomes. It can be said that the probability models we currently have are
also measures of our knowledge: the more specific the models, the greater the
knowledge. In the short time it had at its disposal, science managed to 1) de-
termine the probabilities of death for not particularly specific groups (the simple
model described above is the crudest such model), 2) give general instructions
about behaviour, and 3) identify specific groups that could be extremely vulner-
able to vaccination or to the COVID-19 disease. Thus, science has given a clear
instruction: if the person does not belong to an extremely vulnerable group for
vaccination, they should be vaccinated.

3 The concept of probability and crisis in statistics
The scientifically based concept of probability described above is highly suc-

cessful within the limits of its applicability. However, these limits are very strict
and probability models cannot be applied to many situations to which we would
like to apply them. Real random phenomena only approximately correspond to
random phenomena that we can always reproduce under the same conditions. The
samples we use to make inferences about a population often deviate too much
from random samples, preventing credible conclusions to be drawn. Furthermore,
in more complex situations we would need many assumptions to associate a prob-
ability model with a random phenomenon. If the assumptions are not met then we
have no guarantee that the predictions based on the model are correct. When it
comes to an individual case, probability models lose their power and the predic-
tions they provide can only be one of the indicators to guide us.

The problems of complexity and of the single case of a random phenomenon
are especially important for disaster risk assessments because no matter how sim-
ilar they may appear, disasters are always complex and unique phenomena. In
the article Freedman and Stark [2003] it was shown how powerless statistics is in
such cases. The article begins with the following text:

What is the chance that an earthquake of magnitude 6.7 or greater
will occur before the year 2030 in the San Francisco Bay Area? The
U.S. Geological Survey estimated the chance to be 0.7± 0.1 (USGS,
1999). In this chapter, we try to interpret such probabilities.

and ends with the following words:
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Another large earthquake in the San Francisco Bay Area is inevitable,
and imminent in geologic time. Probabilities are a distraction. In-
stead of making forecasts, the USGS could help to improve build-
ing codes and to plan the government’s response to the next large
earthquake. Bay Area residents should take reasonable precautions,
including bracing and bolting their homes as well as securing water
heaters, bookcases, and other heavy objects. They should keep first
aid supplies, water, and food on hand. They should largely ignore the
USGS probability forecast.

After a detailed analysis of how the U.S. Geological Survey came to this prob-
ability estimate, Freedman and Stark showed that due to the complexity of the
mechanism of the earthquake, many assumptions and subjective assessments had
to be made, which completely devalued the established model and the obtained
probability estimate.

David A. Freedman is one of the well-known statisticians who focused on
the issue of the correct use of statistics, pointing out today’s wrong practice of
statistics where statistics are used “everywhere” and “unlimited” in such a way
that “without much trouble” researchers arrive at mostly wrong answers. In con-
trast, Freedman advocates a balanced combination of qualitative and quantitative
research, rather than blindly accepting statistical inferences based on untested as-
sumptions.5 Statistical models and methods should be formulated carefully: their
assumptions should be explained, their validity evaluated, and experimentally
verified on several samples. The results obtained in this way should be viewed
through qualitative analysis and research in order to finally obtain credible con-
clusions.6 Freedman called this approach the shoe leather approach.

The above consideration shows that Kolmogorov’s models have strict limits to
their applicability, and even where they can be applied, they often require a shoe
leather approach. This makes classical statistics a “hard” science with limited
possibilities. And this is precisely where the cause of the crisis in statistics and its
application lies: in the conflict between these characteristics of statistics and the
needs and desires of modern society to solve as many problems as possible and
in as little time as possible with statistical methods. The conflict occurs in two
segments: where statistics can be applied and where statistics cannot be applied
in a scientifically objective manner.

Where statistics can be applied in a scientifically objective way, in the analysis
of mass phenomena, the applications are not done with sufficient quality, either be-

5“But perhaps the most serious source of error lies in letting statistical procedures make decisions
for you.” [Good and Hardin, 2012, p. 3].

6“Combining qualitative insights and quantitative analysis - and a healthy dose of scepticism - may
provide the most secure results.” [Freedman, 2008, p. 313].
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cause of ignorance and irresponsibility, but also because of unethical behaviour.7

That is why today the scientific community places more and more demands on
financiers and academic institutions to ensure an adequate system that would
not encourage unethical activity8, and would support more rigorous scientific re-
search: “(1) more courses on methodologically robust and transparent scientific
research in student curricula and training of established researchers; (2) increase
in the involvement of experienced methodologists, statisticians and data stewards
on projects by, for example, securing funding for such personnel or establishing
advisory bodies that would provide advice and guidance for funded projects; (3)
better technical/infrastructural support for enabling open science practices, rigor-
ous reporting, archival of all elements of research and creating linkages among
them” [Purgar et al., 2022, p. 1396].

Far more worrying is the ubiquitous use of statistics where its scientific power
is very weak — in predicting what will happen in a particular case under condi-
tions of uncertainty. Kolmogorov’s models can give the probability of whether
something will happen in a particular case only if that case is the realization of a
well-defined and repeatable random phenomenon. But even then, those probabil-
ities do not mean much. Only when these probabilities are close enough to one or
zero can we practically be sure that something will happen or not happen. Other-
wise, it is reasonable to stick to probabilities in predicting only when we do not
have better deterministic indicators. However, uncertain situations are frequent
and very important, and require our reaction, especially if they are crisis situations.
This creates a strong need to try to provide predictions as a basis for appropriate
action in such situations. Since classical statistics is almost unusable there, there
was an accelerated development of Bayesian statistics, as an alternative to classi-
cal (frequentist) statistics. Bayesian approach is based on a completely different
concept of probability, the so-called concept of subjective probability, which will
be briefly explained below. Such a concept of probability allows Bayesian statis-
tics to be applied everywhere. That is why to many researchers Bayesian statistics
seems to be the “holy grail” of statistics which solves all problems almost algo-
rithmically. The danger lies in the fact that the truth about Bayesian statistics is
exactly the opposite: its meaningful use requires an even stronger shoe leather
approach compared to frequentist statistics. The danger that Bayesian statistics

7For example, a recent comprehensive survey of science in the Netherlands Gopalakrishna et al.
[2022] showed that in the last three years approximately every second scientist participated in
at least one qualitatively questionable research, while every twelfth scientist faked or fabricated
their research at least once.

8Unethical activity is largely encouraged by the existing system of financing and evaluation of
scientists, which does not respect equality and diversity in science and sets narrow bureaucratic
evaluation systems. This has already become such a big problem that there is a distinct trend in
the scientific community to completely change the system of doing science and its evaluation.
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carries is vividly stated in [Gelman, 2008, p. 447]: “. . . recommending that sci-
entists use Bayes’ theorem is like giving the neighbourhood kids the key to your
F-16”. It should be kept in mind that almost everyone except very experienced
statisticians are “neighbourhood kids” here, and that the “F-16” flies through vital
areas of human society: from politics, judiciary, economy and finance to health,
environmental protection and natural and social threats.

Unfortunately, the crisis is not only in inappropriate application of statistics.
In statistical science itself, there has been a crisis due to the division among statis-
ticians regarding the preference for classical or Bayesian statistics and criticizing
the other.9 Of course, this crisis also produces additional confusion in the appli-
cation of statistics. The situation becomes even more dramatic with the advent
of Big Data, which poses new major challenges for statistics.10 The statistical
community is aware that the time has come to overcome the crisis.11 Understand-
ing the various concepts of probability is crucial here, especially Kolmogorov’s
concept of probability and Bayesian concept of subjective probability. In the next
section I will argue that Kolmogorov’s interpretation differs significantly from the
frequentist and propensity interpretation. Thus, it does not fall under the criti-
cism that these other two interpretations fall under. In Section 5, I will highlight
some essential characteristics of Bayesian interpretation that determine its place in
statistics. The correct understanding of Kolmogorov’s and Bayes’ interpretation
indicates the way out of the crisis.

4 Kolmogorov’s interpretation versus frequentist and
propensity interpretation

Kolmogorov’s interpretation of probability is usually placed in the frequentist
interpretation of probability elaborated by von Mises in 1919 (Von Mises [1957]).
However, one “detail” significantly separates Kolmogorov’s interpretation from
the standard von Mises frequentist interpretation. Von Mises postulated that the
relative frequencies

nD

n
of an event D in a series of repetitions of a random phe-

nomenon converge to a certain number in the sense of the mathematical concept
of limit and that this very number is the probability of the given event:

9“Basically, there’s only one way of doing physics, but there seems to be at least two way of doing
statistics, and they don’t always give the same answers.” [Efron, 2005, p. 1].

10“Perhaps Statistics should stand up for its responsibilities before a Big Data Disaster” [Fraser
and Reid, 2016, p. 7].

11“This will be a challenging period for statisticians, both applied and theoretical, but it also opens
the opportunity for a new golden age, rivalling that of Fisher, Neyman, and the other giants of
the early 1900s.” [Efron, 2005, p. 1].
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P (D) = lim
n→∞

nD

n

This postulate is experimentally unfounded because neither an infinite number
of repetitions of a random phenomenon is possible nor experimentally obtained
finite sequences of relative frequencies support such a claim. Criticisms of the
frequentist interpretation are mainly criticisms of this postulate. This postulate is
simply “too strong”. In addition, this postulate gives the concept of probability a
completely objective meaning in the sense that probability belongs to a random
phenomenon in the same way as, for example, the number of elements of a set
belongs to that set. In contrast to such an approach, Kolmogorov’s interpretation
of the concept of probability has a completely different basis. It rests on the idea
of modelling: probabilities are ideal numbers within a probabilistic model that
approximate the relative frequencies well enough:

P (D) ≃ nD

n
(1)

Using (1), we can experimentally set up a probabilistic model for the given
random phenomena, as well as check whether the probabilistic model is good
enough for the given random phenomena. And this is enough – Kolmogorov’s
interpretation does not go beyond this scientifically based and verifiable setting
of probabilistic models of random phenomena. In this interpretation, the proba-
bilities are as objective as the above connection is.12 Although von Mises’ and
Kolmogorov’s formulas for P (D) seem to be remarkably similar, their interpre-
tive basis, and thus the concept of probability, are fundamentally different.13

Likewise, the propensity theory, whose most famous representative is Karl
Popper (see e.g., Popper [1959]), at first glance seems to be only an addition to
Kolmogorov’s interpretation in the part that refers to the individual realization of

12I would point out that most other scientific concepts have the same kind of objectivity as prob-
ability. For example, we associate the length s of the travelled path with free fall. However, s
is the distance between two points in Euclid’s ideal geometric model of space. This number is
as objective for free fall as the connection of two points in Euclidean space with the beginning
and the end of the fall is objective. In macroscopic conditions, this connection is strong, but in
microscopic conditions, instead of fixed points, we have molecules in constant oscillation, so we
have an indeterminacy in what is the initial and what is the end point of the fall. This connection
becomes even looser if we go to even smaller dimensions where the laws of quantum physics
dominate. Thus, like probability, the length of the travelled path in free fall is an ideal element
of the corresponding physical model which is as objective as the concept of the travelled path is
objective.

13Kolmogorov’s interpretation is often mistakenly identified with the so-called finite frequentism,
according to which (1) is taken as the operational (empirical) definition of probability. A prob-
ability model is a much more subtle concept than the operational “definition” of probability, so
the corresponding interpretations of probability differ significantly.
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a random phenomenon. However, this addition leads to a completely different
understanding of probability. Namely, Kolmogorov’s models do not say anything
about an individual realization, but only predict ratios in a sequence of such re-
alizations. This is paradoxical at first sight - the sequence consists of individual
realizations, and how can regularity appear in the sequence if it is not present in
the individual realization? Popper introduces the term propensity (tendency) to
give probability a meaning for a particular realization of a random phenomenon.
According to Popper, the conditions that determine random phenomenon are “en-
dowed with a tendency, or disposition, or propensity, to produce sequences whose
frequencies are equal to the probabilities” [Popper, 1959, p. 35]. According to
Popper, propensities are present in every realization of a random phenomenon,
just as, for example, the tendency to fight for survival is present in living beings.
Thus, probabilities as measures of these propensities are also present in every
realization of a random phenomenon. In a series of realizations, these propensi-
ties are manifested as tendencies to obtain relative frequencies equal to the stated
probabilities. This addition to Kolmogorov’s interpretation of probability, like
frequentism, introduces the concept (propensity) which is experimentally unver-
ifiable, and which gives an objective interpretation to the concept of probability.
Thus, the propensity interpretation, as well as frequentism, is not a completion
of Kolmogorov’s interpretation, but it cancels its basic philosophy derived from
the modelling of random phenomena and replaces it with a completely different
concept of probability.14

5 Subjective interpretation, Bayesian statistics and
Bayeseanism

In contrast to Kolmogorov’s interpretation of probability, which through the
formula P (D) ≃ nD

n
has its objectivity in the sense of checking whether it cor-

responds well enough to reality, Bayesian statistics rests on a completely different
concept of probability according to which probability is a subjective measure of
our belief in the truth of a statement. We use this interpretation in everyday life,
for example when we say that it is more likely that there is life outside our planet
than that there is not. If we are talking about whether an event will happen, for
14In addition to unverifiability, the concept of propensity has another important drawback: it is in

contradiction with the problem of referential random phenomena. The probability of an event
depends on the conditions by which we determine the random phenomena. Under one set of
conditions, a random process will have one probability, and under another a different probability.
Thus, propensity cannot be an intrinsic characteristic of a particular process, but a reflection of
its relationship to the conditions under which we determine the random phenomena, which often
depend on our modelling.
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example when I say that I am almost 80% sure that it will snow tomorrow, then
the stated percentage is a subjective measure of my belief that the event will hap-
pen. The concept of probability that dominated until the beginning of the 20th
century belongs to the subjective concept of probability: probability is a measure
of our ignorance. Such an interpretation is a product of an era in which, under the
influence of Newtonian mechanics, it was believed that processes in nature take
place deterministically.15 Frequentist conception of probability was affirmed in
the first half of the twentieth century, primarily due to its successful application
in statistical and quantum physics, as well as in classical statistics. The subjective
conception of probability appears in a new form through the works of de Finetti16

and Savage17, no longer as a measure of our ignorance, but as a measure of our
belief in the truth of various claims. The axioms of probability now have the role
of rational conditions on the subjective assignment of probability. For example,
axiom A ⊆ B −→ P (A) ≤ P (B) now has the following interpretation. Let A
and B be two statements such that if A is true then B is also true. Then the state-
ment B must have a greater or equal subjective probability to be true than does the
statement A. When, based on our knowledge or experience, we use probabilities
to determine how much we believe some statements to be true, the calculus of
probabilities allows us to consistently calculate the probabilities that some other
statements are true. Specially, if we are dealing with predictions in a random
phenomenon, this calculus allows us to calculate the subjective probabilities that
various events will happen.

A whole series of questions are raised, to which this concept of subjective
probability has not yet given a satisfactory answer: 1) Can we measure our beliefs
with numbers at all? 2) Are these numbers uniquely determined by our beliefs?
3) How correct is it to assume that these numbers satisfy Kolmogorov’s axioms,
i.e., to what extent is Kolmogorov’s probability calculus a rational calculus of
our beliefs?18 However, the most important of all is the question of what mean-
ing the subjective probability that a statement is true has. For example, we may
have various beliefs about person X, the potential perpetrator of the crime we are
investigating. If we can express these beliefs with some numbers, subjective prob-
abilities, and if we can apply to them a probability calculus that will calculate the
subjective probability that X is the perpetrator of the crime, what does this sub-
jective probability give us? He did or did not commit a crime, and the calculated
subjective probability of claiming that he committed a crime is at best a reflection
of our subjective attitude towards it. A more correct way is the one used in trials:
to complete the argumentation (evidence) to the point where we are sure of his

15The history of the concept of probability is nicely presented in the book von Plato [1994].
16See for example de Finetti [1970]
17See for example Savage [1954]
18In Freedman [1995], one can find arguments that give negative answers to these questions.
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guilt “beyond all reasonable doubt”.
The problems presented above also refer to the subjective probability of an

event in a random phenomenon. We have seen that Kolmogorov’s probability
cannot predict whether an event will occur in a particular realization of a ran-
dom phenomenon, except in extreme situations when the probability of the event
is close to 1 or 0, and when the phenomenon is replicative. However, it can give
predictions for a sequence of realizations of such a phenomenon. Subjective prob-
ability cannot predict what will happen in a particular case, even when the subjec-
tive probability is close to 1 or 0, nor what will happen in a sequence of repetitions
of a random phenomenon. Thus, it is inferior to the Kolmogorov probability in
predicting the occurrence of an event in a sequence of repetitions of a random phe-
nomenon. In predicting whether an event will occur in a particular realization of
a random phenomenon, both interpretations are weak. However, the Kolmogorov
probability retains at least some objectivity based on objective knowledge of what
happens over a sequence of repetitions and almost certainly gives a correct pre-
diction if the probability is close to 1 or 0. Subjective probability only expresses
our attitude towards the occurrence of that event and is not an objective measure
of that occurrence, no matter how we calculated it. However, as a subjective mea-
sure, it can have a significant impact on our further action.

The calculus of subjective probability is often presented as the logic of reason-
ing. Classical logic deals with the truth of declarative statements. If in classical
logic we have proved a statement X from some assumptions, then we are sure
that if the assumptions are true in a certain situation, the statement X will also
be true. This has an objective meaning. If we experimentally established that the
assumptions are true, we know that X is also true. If we experimentally estab-
lished that X is not true, then at least some of the assumptions are also not true.
Just as classical logic allows us to calculate the truth of the statement X from
the truth of the assumptions, so the calculus of subjective probability allows us
to calculate the probability of the statement X from the probability of some other
statements. However, there is no objective verification here because the subjective
probabilities do not say anything about the truth of the statements, but only about
our beliefs in their truth.

It follows from the above that the subjective concept of probability is “tempt-
ing” because, unlike Kolmogorov’s probability, we can apply it everywhere. How-
ever, it is not scientifically based because it cannot predict whether a statement is
true or not, that is, whether an event will happen or not, or even what its relative
frequency is in a sequence of repetitions. It only has a heuristic value that can
only subjectively influence our further actions. But even then, even if an expert
determines subjective probabilities for a certain area, they must be only one set
of parameters used to guide further action. When it comes to situations in which
wrong actions can have profound consequences, then additional research should
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be done that will almost determine what will happen, and decisions should be
made whose correctness we are sure of, based on the acquired knowledge, and
not relying on subjective probability, as clearly argued in Bunge [2008]. In short,
Kolmogorov’s probability is a successful result of mathematical modelling of re-
peatable random phenomena, while subjective probability is a questionably suc-
cessful result of mathematical modelling of our beliefs in the truth of statements,
and this determines the limits and way of applying these concepts.

The subjective interpretation of probability is the basis of Bayesian statistics.
Thus, Bayesian statistics inherits the characteristics of subjective probability. This
basis enables it to be applied everywhere, but it also determines that its results
have only heuristic and not scientifically based value. The specificity of Bayesian
statistics is that it introduces a certain dynamic mechanism on this basis, which
has its driver in Bayes’ formula.

To state Bayes’ formula, we need the notion of conditional probability. For
each event A that has a non-zero probability, we can define a new function P ( |A)
on the events space that assigns a number P (X|A) to each event X:

P (X| A) = P (X ∩ A)

P (A)

This function also satisfies the probability axioms and is called the conditional
probability. In Kolmogorov’s interpretation, in a sequence of repetitions we only
look at how many times nX∩A an event X happened in those nA occurrences
when an event A happened. The conditional probability corresponds to the relative
frequency

P (X| A) ≃ nX∩A

nA

In Kolmogorov’s interpretation, this connection gives the conditional probability
the same objectivity as the probabilities of the original probability model. In the
subjective interpretation, P (X|A) determines how confident we are that state-
ment X is true if statement A is true.

Bayes’ formula follows from the probability axioms:

P (H| A) = P (H)

P (A)
P (A| H)

In Kolmogorov’s interpretation, Bayes’ formula has a precisely determined
objective meaning. In a sequence of repetitions, it connects the relative frequency
of an event A under the condition that an event H has occurred with the relative
frequency of the event H under the condition that the event A has occurred. The
importance of Bayes’ formula is that we can determine the probability of an event
in a narrower group from knowing the probability of an event in a wider group.
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And we have seen how important narrowing of groups (increasing the conditions
for a random occurrence) is for predicting what will happen to an individual from
the group (what will happen in a particular realization of a random occurrence).
As an illustration, let us take the probability of death from vaccination against
Covid-19 for a given person. Let H be the event that a person from a certain
population will die from vaccination, and let A be that he has certain physical
characteristics (vulnerability to certain allergies, advanced age, weak immunity,
etc.). If we know for the entire population the probability of death from vaccina-
tion P (H), the probability P (A) of physical characteristics A and the probability
P (A|H) that a person had these characteristics if he died from vaccination (all of
the above can be experimentally estimated via relative frequencies), then Bayes’
formula gives the probability P (H|A) of death from vaccination for a narrowed
group, the part of the population that has characteristics A. By finding additional
characteristics of a given person, we can again apply Bayes’ formula to find the
probability of death from vaccination for a given person compared to an even nar-
rower group. In this way, we not only get probabilities for smaller groups, but we
also update probabilities for an individual (a single realization of a random phe-
nomenon). If we thereby get probabilities closer and closer to 1 or 0, then we can
practically determine with certainty whether a person will die from vaccination
or not. This is the real power of the Bayes’ formula (and in general, Bayesian
analysis on Bayesian networks).

However, the unlimited application of this formula in the subjective interpre-
tation of probability is precisely what characterizes the philosophical doctrine of
Bayesianism, while its application in the subjective interpretation of probability
to statistics characterizes Bayesian statistics. It should be noted right away that
it is questionable whether the Bayes’ formula can be applied to statements at all
because it is derived from Kolmogorov’s axioms, for which it is also questionable
whether and under what conditions they can be applied to statements. In subjec-
tive interpretation H is usually a hypothesis while A is a verifiable fact. Specifi-
cally, in Bayesian statistics, H is a hypothesis about some parameter of a random
phenomenon or about a model of a random phenomenon, while A is a record from
a sample of that random phenomenon or population. Then P (H) is the so-called
a priori subjective probability that the hypothesis H is true, while P (H|A) is the
posterior updated subjective probability that H is true after it has been recorded
that A is true. In this way, Bayes’ formula allows us to update the subjective
probability of the truth of H with each new knowledge. However, a new problem
arises here: it turns out that this updating is highly dependent on the initial subjec-
tive probability. Or in the words of D. A. Freedman [Freedman, 2009, p. xiv]: “to
pull a rabbit from a hat, a rabbit must first be placed in the hat.” Moreover, it can
be seen from the Bayes’ formula that with an appropriate choice of a prior prob-
ability we can obtain any desired a posterior probability, so “. . . any reaction to
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any experiences can be justified in advance. Thus, Bayesianism implies ‘anything
goes’. . . ” [Albert, 2003, p. 114]. That is why not only classical statisticians but
also Bayesian statisticians warn of the dangerous consequences of irresponsible
use of Bayesian statistics. Even when an expert of a field determines the initial
probabilities according to his beliefs and revises these probabilities based on new
records using the Bayes formula, all the obtained results remain closed in the sub-
jective relationship of the researcher to the phenomenon under investigation. The
results have no objective weight, but only a heuristic weight the only meaning is
that it can guide the researcher in further research using other methods.

Making conclusions only based on Bayesian analysis with subjective proba-
bilities, and not yet supported by the experience of researchers but by black box
algorithms that run on computers for which the user often does not know what ex-
actly they are doing, is simply the generation of nonsense that is sold for correct
conclusions. The unbearable lightness of Bayesing consists precisely in the fact
that such “science” can be done by anyone in any field, which is very dangerous.
That is why Bunge writes: “. . . if the U.S. Food and Drug Administration and the
various agricultural experimental and forestry stations were ever to be dominated
by Bayesians, they would become public perils rather than guardians of public
health. . . ” [Bunge, 2008, p. 173], and “subjectivism . . . is a mark of either anti
science or pseudoscience. Learned ignorance is still ignorance. In particular, di-
agnosis with the help of made-up numbers is not safer than without them; and
trial by numbers is no more fair than trial by water or by combat. Thou shalt not
gamble with life, justice, peace, or truth.” [Bunge, 2008, p. 173]. A recent dis-
astrous example of Bayesianism is the scandal in the Netherlands, when between
2013 and 2018, the tax authorities wrongly accused tens of thousands of parents of
fraudulently obtaining tax benefits. Some parents had to repay tens of thousands
of euros to the state, which pushed many families into a financial and psycho-
logical crisis: from loss of housing to divorce. It all started when, in 2013, the
tax authority introduced a fraud detection algorithm based on the so-called “risk
classification model” that performed a Bayesian analysis with subjective proba-
bilities that included, among other things, racist and ethnic prejudices (Amnesty
International [2021]).

The heuristic value of Bayesian analysis with subjective probabilities, to guide
us in the search for the correct theoretical model, also has its limits. Hume already
showed that we cannot discover a theoretical model (universal laws) by any form
of induction based on evidence (Hume’s problem of induction), and the Bayesian
mechanism tries to do just that.19 Furthermore, Pierre Duhem (Duhem [1954])
showed already at the beginning of the twentieth century, and Willard Van Or-

19“Bayesian rationality is just a complicated restatement of Hume’s irrationalism” [Albert, 2003,
p. 107]
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man Quine (Quine [1951]) later generalized it to a wider context (the so-called
Duhem–Quine thesis) that every theoretical model must be seen as a whole. If
the model incorrectly predicted a result, then it basically fails as a whole, and that
fail cannot be attributed to just one hypothesis in the model. Usually this is fol-
lowed by “repairing” the model and in the final repair one part is changed, maybe
only one hypothesis. Bayesian analysis reduces updating the model to a single
hypothesis in advance, and is therefore limited.

The responsible use of Bayesian analysis with subjective probabilities and
Bayesian statistics derives from its heuristic value. As with Kolmogorov’s mod-
els, if we know the limits of applicability of Bayesian analysis, how it can help
us and how it cannot, it can be very useful. It should only be clear that due to its
subjective nature, it can only play a heuristic role in the search for a theoretical
model of a phenomenon, and when it comes to a random phenomenon – the cor-
responding Kolmogorov model. Combined with other considerations, it can help
us find the correct model. But the final test of the correctness of the model is the
experimental test – confronting the model with the reality it is trying to describe –
and here there is no more room for Bayesian analysis with subjective probabilities.

6 Conclusion
Kolmogorov’s concept of probability is the only scientifically based concept

of probability. It has clear conditions of its applicability and forms the basis of
classical statistics. Bayesian statistics is based on the subjective concept of prob-
ability, and as such can only have a heuristic value in searching for the truth, but it
cannot and must not replace the truth. The following quote succinctly illustrates
the different role of classical and Bayesian statistics: “The FDA , for example,
doesn’t care about Pfizer’s prior opinion of how well it’s new drug will work, it
wants objective proof. Pfizer, on the other hand, may care very much about its own
opinions in planning future drug development.” ([Efron, 2005, p. 1]). The way out
of the crisis and a new synthesis of statistics as a scientific discipline should take
Kolmogorov and Bayesian analysis as elements, each of which has a well-defined
and limited use. Only together with qualitative analysis and other types of quan-
titative analysis, and combined with experiments, they can contribute to reaching
correct conclusions. (see e.g. Gelman and Shalizi [2013] and Little [2006]).
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